Improved muscle healing through enhanced regeneration and reduced fibrosis in myostatin-null mice.
نویسندگان
چکیده
Numerous stimulatory growth factors that can influence muscle regeneration are known. Recently, it has been demonstrated that neutralization of muscle growth inhibitory factors, such as myostatin (Mstn; also known as growth differentiation factor 8, Gdf8), also leads to increased muscle regeneration in mdx mice that are known to have cycles of degeneration. However, the precise mechanism by which Mstn regulates muscle regeneration has not yet been fully determined. To investigate the role of Mstn in adult skeletal muscle regeneration, wild-type and myostatin-null (Mstn-/-) mice were injured with notexin. Forty-eight hours after injury, accelerated migration and enhanced accretion of myogenic cells (MyoD1+) and macrophages (Mac-1+) was observed at the site of regeneration in Mstn-/- muscle as compared with wild-type muscle. Inflammatory cell numbers decreased more rapidly in the Mstn-/- muscle, indicating that the whole process of inflammatory cell response is accelerated in Mstn-/- mice. Consistent with this result, the addition of recombinant Mstn reduced the activation of satellite cells (SCs) and chemotactic movements of both myoblasts and macrophages ex vivo. Examination of regenerated muscle (28 days after injury) also revealed that Mstn-/- mice showed increased expression of decorin mRNA, reduced fibrosis and improved healing as compared with wild-type mice. On the basis of these results, we propose that Mstn negatively regulates muscle regeneration not only by controlling SC activation but also by regulating the migration of myoblasts and macrophages to the site of injury. Thus, antagonists of Mstn could potentially be useful as pharmacological agents for the treatment of disorders of overt degeneration and regeneration.
منابع مشابه
Muscle regeneration in the prolonged absence of myostatin.
Myostatin is an endogenous inhibitor of muscle conserved across diverse species. In the absence of myostatin, there is massive muscle growth in mice, cattle, and humans. Previous studies in the mdx mouse model of muscular dystrophy demonstrate that inhibiting myostatin attenuates several features of dystrophic muscle. These findings have encouraged the development of human therapies to block my...
متن کاملLack of Smad3 signaling leads to impaired skeletal muscle regeneration.
Smad3 is a key intracellular signaling mediator for both transforming growth factor-β and myostatin, two major regulators of skeletal muscle growth. Previous published work has revealed pronounced muscle atrophy together with impaired satellite cell functionality in Smad3-null muscles. In the present study, we have further validated a role for Smad3 signaling in skeletal muscle regeneration. He...
متن کاملInactivation of PPARβ/δ adversely affects satellite cells and reduces postnatal myogenesis.
Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) is a ubiquitously expressed gene with higher levels observed in skeletal muscle. Recently, our laboratory showed (Bonala S, Lokireddy S, Arigela H, Teng S, Wahli W, Sharma M, McFarlane C, Kambadur R. J Biol Chem 287: 12935-12951, 2012) that PPARβ/δ modulates myostatin activity to induce myogenesis in skeletal muscle. In the present study,...
متن کاملMyostatin-null mice exhibit delayed skin wound healing through the blockade of transforming growth factor-β signaling by decorin.
Myostatin (Mstn) is a secreted growth and differentiation factor that belongs to the transforming growth factor-β (TGF-β) superfamily. Mstn has been well characterized as a regulator of myogenesis and has been shown to play a critical role in postnatal muscle regeneration. Herein, we report for the first time that Mstn is expressed in both epidermis and dermis of murine and human skin and that ...
متن کاملCollagen VI deficiency reduces muscle pathology, but does not improve muscle function, in the γ-sarcoglycan-null mouse
Muscular dystrophy is characterized by progressive skeletal muscle weakness and dystrophic muscle exhibits degeneration and regeneration of muscle cells, inflammation and fibrosis. Skeletal muscle fibrosis is an excessive deposition of components of the extracellular matrix including an accumulation of Collagen VI. We hypothesized that a reduction of Collagen VI in a muscular dystrophy model th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 118 Pt 15 شماره
صفحات -
تاریخ انتشار 2005